Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation

نویسندگان

  • Un Young Yu
  • Byong Chul Yoo
  • Jung-Hyuck Ahn
چکیده

Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta (GSK3β) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the GSK3β kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress

The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55β in Xenopus egg extracts that are...

متن کامل

Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain.

Brain protein kinase B (Akt) and glycogen synthase kinase-3 (GSK-3) activities are adaptable to changes of peripheral blood glucose level in vivo. GSK-3 phosphorylates microtube-associated protein tau at multiple sites, which can be antagonized by protein phosphatase-2A (PP-2A). The imbalance among these enzymes might have potential connections with diabetes mellitus (DM) and Alzheimer's diseas...

متن کامل

P 142: Air Pollution\'s Triggering Role in Tau Protein Hyper Phosphorylation; A Sign of Alzheimer Disease

Nowadays, air pollution is one of the major problems in developed and developing countries. In recent years, effects of air pollution on neuroinflammatory diseases such as Alzheimer disease and Parkinson disease have been studied. Researches on polluted cities citizens indicate increasing in central nervous system (CNS) inflammatory factors in comparison with clean cities; also air pollution ex...

متن کامل

Molecular Implication of PP2A and Pin1 in the Alzheimer's Disease Specific Hyperphosphorylation of Tau

BACKGROUND Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD) related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2014